
COUPLING FROM THE PAST–TAKE HOME ASSIGNMENT

PIERRE BELLEC

Let X be a finite set and let P (·, ·) be an irreducible and aperiodic transition matrix on X , with
stationary distribution π.

Random mapping representation. Throughout the exam, we assume that there exists a random
function f : X → X such that for any x, y ∈ X we have P(f(x) = y) = P (x, y).

Sequence (ft)t≥0 of iid random variables. Throughout the problem, let (ft)t=0,1,2,... be a countable
sequence of iid copies of f , indexed by the set of non-negative integers. Hence for any t ≥ 0 we have
P(ft(x) = y) = P (x, y) for all deterministic x, y ∈ X .

Assumption (C). The coalescence time τc, defined by
τc = min{t ≥ 1 : ft ◦ ft−1 ◦ ... ◦ f1 is a constant function},

if this set is nonempty and τc = +∞ if this set is empty, is finite with probability 1.

Part 0.

1. Give an example of a random mapping representation of some aperiodic and irreducible Markov
Chain such that Assumption (C) does not hold, that is, an example with P(τc = +∞) > 0.

2. Prove that if for some integer t > 0, P(τc ≤ t) > 0 then P(τc = +∞) = 0.
3. Deduce that P(τc = +∞) is equal to either 0 or 1.

In the rest of the exam, we assume that Assumption (C) always holds so that P(τc = +∞) = 0.

The goal of these questions is to study possible schemes to sample a random variable with distribution
π. The first idea that may come to mind is to apply the functions ft successively until τc, then output
the current state.

Part I (Forward). Define a grand coupling as follows. For any x ∈ X , define Xx
0 = x and Xx

t =
ft(Xt−1), so that Xx

t = ft ◦ ft−1 ◦ ... ◦ f1(x). The coalescence time τc is the first time all the Markov
Chains (Xx

t )x∈X have met.

4. Give an example of a random mapping representation of some aperiodic and irreducible Markov
Chain on X = {0, 1, 2} such that the random variable Xx0

τc
for x0 ∈ X is NOT distributed

according to π. Note that Xx
τc

is the same for any x ∈ X .

Part II (Backward). The previous “forward” scheme thus fails. We now study a “backward” scheme,
known in the literature as “coupling from the past”.

5. Backward vs. Forward. If the answer is “always true” prove it, otherwise give a simple
counterexample.

a. Is it always true that if f3 ◦ f2 ◦ f1 is constant, then f4 ◦ f3 ◦ f2 ◦ f1 = f3 ◦ f2 ◦ f1?
b. Is it always true that if f1 ◦ f2 ◦ f3 is constant, then f1 ◦ f2 ◦ f3 ◦ f4 = f1 ◦ f2 ◦ f3?

6. Define M = min{t ≥ 1 : f1 ◦ f2 ◦ · · · ◦ ft is a constant function } if this set is nonempty, and
M = +∞ otherwise. Prove that M is finite with probability one under Assumption (C).
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7. Prove that f1 ◦ f2 ◦ · · · ◦ fM (x) = f1 ◦ f2 ◦ · · · ◦ fM ◦ · · · ◦ fM+k(x) for any x, y ∈ X and any
integer k ≥ 1.

8. Most important and difficult question of the problem. Make sure to attend this question and be
clear and rigourous in your answer.
The goal of this question is to prove that X̂ = f1 ◦ f2 ◦ · · · ◦ fM (x0) is distributed according to
the invariant distribution π.

a. Define a sequence of iid functions g1, ..., gt, ... by gt = ft−1 for all t ≥ 1.
Define N = min{t ≥ 1 : g1 ◦ g2 ◦ · · · ◦ gt is a constant function } and Ŷ = g1 ◦ ... ◦ gN (x0).
Prove that (N, Ŷ ) has the same distribution as (M, X̂).

b. Prove that M + 1 ≥ N always holds.
c. Is it always true that Ŷ = f0(X̂)?
d. Prove that f0 is independent of X̂.
e. Prove that P(f0(X̂) = y) = P(X̂ = y).
f. Conclude.

9. Deduce from the previous question an algorithm that outputs a random variable distributed
according to π, by sequentially generating iid random functions f1, f2, f3, ....

Part III (Another idea). Consider now the following algorithm.

• Algorithm 2:
a. Set t = 1.
b. Generate f (t)

1 , f
(t)
2 , f

(t)
3 , ..., f

(t)
t iid copies of the random function f independently of all

previous iterations of the algorithm
c. – If f (t)

1 ◦ · · · ◦ f (t)
t is a constant function, then output its unique value and stop the

algorithm.
– Otherwise, throw away f (t)

1 , f
(t)
2 , f

(t)
3 , ..., f

(t)
t , increase t by one, i.e., set t := t + 1

and go to step b.

10. By studying the Markov Chain defined on X = {0, 1, 2} with the random function f defined by
P(f(0) = 1, f(1) = 2, f(2) = 2) = 1/2, P(f(0) = 0, f(1) = 0, f(2) = 1) = 1/2, show that the
algorithm of Algorithm 2 does NOT output a random variable distributed with respect to π.
(Hint: you may, for instance, show that if Ŷ is the random variable output by Algorithm 2 then
P(Ŷ ∈ {0, 2}) is too large.)
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Part IV.

11. Consider a Markov Chain on X = {0, 1, ..., n} with transition probabilities defined by P (i,min(i+
1, n)) = 1/2, P (i,max(i− 1, 0)) = 1/2 and 0 elsewhere, as in the graph below.
a. Propose a random mapping representation f : X → X such that P(f(i) = j) = P (i, j) for

any i, j ∈ X . The proposed random mapping representation should satisfy that f(i) ≤ f(j)
always holds for any i ≤ j.

b. Show that the event {M ≤ t} can be simply expressed in terms of f1 ◦ f2 ◦ f3 ◦ ... ◦ ft(0)
and f1 ◦ f2 ◦ f3 ◦ ... ◦ ft(n).
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c. Explain why, in this case and thanks to question f(i) ≤ f(j) always holds for any i ≤ j,
the algorithm of Part II that outputs a random variable with distribution π can be greatly
simplified. Figure 25.2 in the book illustrates this.
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