
HOMEWORK 9

654 STOCHASTIC PROCESSES

Note for the current and future homework: due to a large class size and time
constraints, not all exercises will be graded.

As you are the first class to go through these homework assignments, they may
contain typos/ambiguities. Feel welcome to contact us if you see a typo or have
doubt about other issues.

Exercises from Durett’s book. See https://services.math.duke.edu/~rtd/EOSP/
EOSP2E.pdf

• 2.46
• 2.49
• 2.52
• 2.59
• 2.60
• 2.55 (Optional)
• 2.56 (Optional)
• 2.61 (Optional)

Construction of non-homogeneous Poisson process by change of variable.
Let λ : [0,+∞) → (0,+∞) be a continuous function and let {N(t), t ≥ 0} be a
Poisson process with rate 1 and let (T1, T2, ...) be the jump times of N(·).

1. Assume that there exists a continuously differentiable and strictly increasing
function Λ : [0,+∞)→ [0,+∞) so that (Λ−1(T1),Λ−1(T2),Λ−1(T3), ...) are
the jump times of a non-honogeneous Poisson process with rate λ(·). Find
the relationship between λ and Λ and show that Λ is unique.

2. Show that if Λ(·) is the function found in the previous question, then
(Λ−1(T1),Λ−1(T2),Λ−1(T3), ...) are the jump times of a non-honogeneous
Poisson process with rate λ(·).

Discrete Markov Chains from Poisson processes. Consider phone calls that
arrive at times S1, S2, S3, ... as a one-dimensional Poisson process with rate λ on
[0,+∞), this process is N(·) and we write N(t) = N([0, t]) for simplicity. The
i-th call lasts Yi ∼ Exp(µ) units of time, independently of the call arrivals and
independently of the other call lengths.

Let {Q(t), t ≥ 0} be the number of calls still happening at time t, and let T1, T2, T3...
be the points of discontinuity of Q (i.e., the time points when a call starts or a call
ends). We construct Q so that it is right continuous: Q is continuous on [Tk, Tk + ε]
for small enough ε.
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1. (Memoryless property) For a fixed t, what is the joint distribution of
Sn+1 − t,max(0, S1 + Y1 − t),max(0, S2 + Y2 − t), ...,max(0, Sn + Yn − t)

conditionally on the event

N(t) = n,Q(t) = q, IS1+Y1≤t = δ1, IS2+Y2≤t = δ2, ...ISn+Yn≤t = δn

where n, q ≥ 0 are deterministic integers and δ1, ..., δn are in {0, 1} such
that

∑n
i=1 δi = q (the δ’s indicate which calls are still ongoing at time t).

2. Define a discrete-time process (Xk)k=1,2,3,... by Xk = Q(Tk), the number
of calls still happening at the k-th point of discontinuity Tk. Show that
(Xk)k≥1 is a Markov Chain on the non-negative integers, and find its matrix
of transition probabilities P (·, ·).

3. Find π the stationary distribution of P (·, ·).

4. Compare π with the distribution of long-run limit (t→ +∞) of the number
of calls still happening at time t, computed in the lecture.

Programming.

1. Create a program that generates a Poisson Point process N(·) in the square
[0, 1]2, with intensity function λ(x, y) = 180yx(1 − x)2. You may use
python/R functions to generate iid Beta distributions.

2. Can you provide a different method to generate the same process?

3. What is the joint distribution of the number of points of the four sub-squares

N([0, 0.5]× [0, 0.5]), N([0.5, 1]× [0, 0.5]), N([0, 0.5]× [0.5, 1]), N([0.5, 1]× [0.5, 1])?

By sampling many iid copies of the Poisson process, plot histograms that
approximate the pmf of these four random variables, and compare with the
real pmf.
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