HOMEWORK 3

654 STOCHASTIC PROCESSES

Note for the current and future homework: due to a large class size and time constraints, not all exercises will be graded.

As you are the first class to go through these homework assignments, they may contain typos/ambiguities. Feel welcome to contact us if you see a typo or have doubt about other issues.

Exercises from the Book page 18.

- 1.10 (Optional)
- 1.12 (Optional)
- 1.13
- 1.14

The Strong Markov property. Let \mathcal{X} be finite and consider Markov chain $\{X_t, t = 0, 1, 2, ...\}$ on \mathcal{X} with transition matrix P.

Let τ be a stopping time, that is, a random variable valued in $\{0, 1, 2, ...\} \cup \{+\infty\}$ such that for any $t \ge 0$, the event $\{\tau = t\}$ is determined by $(X_0, ..., X_t)$. Equivalently, τ is a stopping time if for any $t \ge 0$, there exists a function $p_t : \mathcal{X}^{t+1} \to \{0, 1\}$ such that the event $\{\tau = t\}$ occurs if and only if $p_t(X_0, ..., X_t) = 1$. (You may use these functions $p_t()$ for the following questions).

Let $x \in \mathcal{X}$; we assume here that $\mathbf{P}[X_0 = x] = 1$.

- 1. Let $I_{\{\tau < +\infty\}}$ be the indicator function of the event $\{\tau < +\infty\}$. Express this indicator function as an infinite sum of indicator functions of events $\{\tau = t\}$.
- 2. If $f : \mathcal{X}^{m+1} \to \{0,1\}$ is a function, define the function $F : \mathcal{X} \to \mathbb{R}$ by $F(z) = \mathbf{E}_z[f(X_0, ..., X_m)]$ for any $z \in \mathcal{X}$. Show that

$$\mathbf{E}_{x}[I_{\{\tau < +\infty\}}f(X_{\tau}, X_{\tau+1}, ..., X_{\tau+m})] = \mathbf{E}_{x}[I_{\{\tau < +\infty\}}F(X_{\tau})].$$

You may invoke Proposition A.11 of the book to argue about changing the order of summations (or limits) and expectations.

- 3. Simplify the right hand side of the previous display in the case where $\mathbf{P}_x[X_{\tau} = z] = 1$ (for instance, τ could be the first hitting time of z). 4. Show that if now $f : \mathcal{X}^{m+1} \to \mathbb{R}$, then f can be written as a linear
- 4. Show that if now $f : \mathcal{X}^{m+1} \to \mathbb{R}$, then f can be written as a linear combination of a finite number of functions $\mathcal{X}^{m+1} \to \{0,1\}$. Generalize question 2 to any $f : \mathcal{X}^{m+1} \to \mathbb{R}$.
- 5. Let $C_m = \mathcal{X}^m$ and let g be a function $\bigcup_{m=0}^{+\infty} C_m \to \mathbb{R}$. In words, g is a function that takes as input arbitrarily but finitely many elements of \mathcal{X} , and

the notation $g(x_0, x_1, ..., x_t)$ makes sense for any $t \ge 0$ and any $x_0, ..., x_t \in \mathcal{X}$. Show that

$$\mathbf{E}_{x}[g(X_{0},...,X_{\tau})I_{\{\tau<+\infty\}}f(X_{\tau},X_{\tau+1},...,X_{\tau+m})] = \mathbf{E}_{x}[g(X_{0},...,X_{\tau})I_{\{\tau<+\infty\}}F(X_{\tau})]$$

and simplify the statement in the case $\mathbf{P}_x[\tau < +\infty, X_\tau = z] = 1$.

- 6. Assume that $\mathbf{P}_x[\tau < +\infty] = 1$ and define the sequence of random variables $Y_t = X_{t+\tau}$ for all $t \ge 0$. Show that Y_t is a Markov chain with transition matrix P and initial distribution $\mathbf{P}[Y_0 = y] = \mathbf{P}_x[X_\tau = y]$ for any $y \in \mathcal{X}$.
- 7. Let $\tau_x^0, \tau_x^1, ..., \tau_x^r, ...$ be the return times to x, i.e., $\tau_x^0 = 0$ and $\tau_x^r = \inf\{t > \tau_x^{r-1} : X_t = x\}$. Using the previous question, explain why $\mathbf{E}_x[\tau_x^r] = r\mathbf{E}_x[\tau_x^1]$ for any r > 0. Use Lemma 1.13 to conclude that $\mathbf{P}_x(\tau_x^r < +\infty) = 1$. Show that for any $f, g \in \bigcup_{m=0}^{+\infty} C_m \to \{0, 1\}$,

$$\begin{aligned} \mathbf{E}_{x}[g(X_{0},...,X_{\tau_{x}^{1}})f(X_{\tau_{x}^{1}},...,X_{\tau_{x}^{r}})] &= \mathbf{E}_{x}[g(X_{0},...,X_{\tau_{x}^{1}})]\mathbf{E}_{x}[f(X_{\tau_{x}^{1}},...,X_{\tau_{x}^{r}})],\\ &= \mathbf{E}_{x}[g(X_{0},...,X_{\tau_{x}^{1}})]\mathbf{E}_{x}[f(X_{0},...,X_{\tau_{x}^{r-1}})].\end{aligned}$$

Conclude that the events $\{g(X_0, ..., X_{\tau_x^1}) = 1\}$ and $\{f(X_{\tau_x^1}, ..., X_{\tau_x^2}) = 1\}$ are independent under \mathbf{P}_x .

8. With the notation of the previous question, conclude that $h(X_0, ..., X_{\tau_x^1})$ and $h(X_{\tau_x^1}, ..., X_{\tau_x^2})$ are iid for any function $h: \bigcup_{m=1}^{+\infty} C_m \to \mathbb{R}$.

The reader with some measure-theoretic background is invited to look at Proposition A.19 in the book.

On Proposition 1.14(i).

- 1. Generalize Proposition 1.14(i) in the book to the case τ_z^+ is replaced by a stopping time τ such that $\mathbb{P}_z(\tau < +\infty, X_\tau = z) = 1$.
 - a. State the generalization of Proposition 1.14(i) for such τ .
 - b. Does the proof of the book need to be modified if τ is as above?
- 2. Assume that the chain satisfies $X_0 = z$ with probability 1 and that the chain is irreducible. Let τ be the first time that the chain returns to z after having visited every other states at least once, i.e.,

$$\tau = \inf \{t > 0 : X_t = z \text{ and } \mathcal{X} \subseteq \{X_1, ..., X_t\} \}.$$

Is τ a stopping time and does it satisfy $\mathbb{P}_z(\tau < +\infty, X_\tau = z) = 1$?

The ergodic Theorem (Optional). Let $\{X_t, t = 0, 1, 2, 3, ...\}$ be a Markov chain on a finite set \mathcal{X} . Assume that the chain is irreducible with stationary distribution π .

Let M > 0. For any bounded function $f : \mathcal{X} \to [-M, M]$, define

$$E_{\pi}(f) = \sum_{x \in \mathcal{X}} \pi(x) f(x).$$

Let $\tau_x^0, \tau_x^1, ..., \tau_x^r, ...$ be the return times to x, i.e., $\tau_x^0 = 0$ and $\tau_x^r = \inf\{t > \tau_x^{r-1} : X_t = x\}$.

Recall the Strong Law of Large Numbers, which states that if $(Z_n)_{n=1,2,...}$ are mutually independent and identically distributed with $\mathbf{E}[|Z_1|] < +\infty$ then

$$\mathbf{P}\left(\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} Z_i = \mathbf{E}[Z_1]\right) = 1.$$

By definition, *Mutual independence* requires that for any finite subset $\{i_1, ..., i_N\}$ of non-negative integers, one has for any real numbers $a_1, ..., a_n$

$$\mathbf{P}\left[\bigcap_{j=1}^{N}\{Z_{j}\leq a_{j}\}\right)\right]=\prod_{j=1}^{N}\mathbf{P}[Z_{j}\leq a_{j}].$$

(The Strong Law of Large Numbers also holds if the sequence of variables is only pairwise independent, which is a weaker requirement that mutually independent).

- 1. Show that if two events A, B have probability 1, then $A \cap B$ also has probability 1.
- 2. For any $k \ge 0$, let $S_k = \sum_{t=\tau_x^k}^{\tau_x^{k+1}-1} f(X_t)$. Using the results from the "Strong Markov Property" exercise, explain why the random variables $(S_k)_{k=0,1,2,3...}$ are mutually independent and identically distributed.
- 3. Show that

$$\mathbf{P}_{x}\left(\lim_{n \to +\infty} \frac{\sum_{t=0}^{\tau_{x}^{n}-1} f(X_{t})}{\tau_{x}^{n}} = L\right) = 1 \quad \text{where} \quad L = \frac{\mathbf{E}_{x}[S_{0}]}{\mathbf{E}_{x}[\tau_{x}^{1}]}$$

- 4. Using Proposition 1.14 from the book, show that L from the previous question is equal to $E_{\pi}(f)$.
- 5. Let $(a_k)_{k=0,1,2,\ldots}$ be a bounded sequence in [-M, M] and let $(T_k)_{k=0,1,2,3\ldots}$ be a sequence of integers such that $\lim_{k\to\infty} T_k/T_{k+1} = 1$ and $\lim_{k\to\infty} T_k = +\infty$. Show that for any real number L,

$$\lim_{k \to +\infty} \frac{a_1 + \dots + a_{T_k}}{T_k} = L \quad \text{implies} \quad \lim_{T \to +\infty} \frac{a_1 + \dots + a_T}{T} = L.$$

6. Why does $\tau_x^n \ge n$ hold? Conclude that

$$\mathbf{P}_x\left(\lim_{T \to +\infty} \frac{\sum_{t=0}^{T-1} f(X_t)}{T} = E_\pi(f)\right) = 1.$$

- 7. Generalize the previous result to the case where X_0 has distribution μ .
- 8. Let $x_0 \in \mathcal{X}$. State the result in the special case of the function f such that f(y) = 1 if $y = x_0$ and f(y) = 0 for $y \neq x_0$. On average, which proportion of time does the chain spend at x_0 ?