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• Classical estimators for regression are defined as

β̂ := argminβ∈Rp n−1
∑n
i=1 `(Yi, X

>
i β),

for a loss function `(·, ·).
• Under differentiability of ` (in second argument), it

can be proved for a matrix K that

β̂ = β∗ + 1
n

∑n
i=1K

−1Xi`
′(Yi, X

>
i β
∗) +Op

(
1
n

)
.

(1)

This is a first order expansion of β̂.

• In addition to proving β̂ is “close” to β∗, it also
gives a precise characterization of error β̂ − β∗.

• In the context of convex regularized estimators de-
fined as

β̂ := argmin
β∈Rp

n−1
n∑
i=1

`(Yi, X
>
i β) + h(β),

for any convex regularizer h(·), many existing re-

sults show that β̂ is close to β∗.

What is a first order expansion for convex
regularized estimators?

What is a First Order Expansion?

• For unregularized estimators (with h ≡ 0), the ex-

pansion η = β∗ + n−1
∑n
i=1K

−1`′(Yi, X
>
i β
∗) of β̂

can be thought of as minimizing (over β ∈ Rp)

Fn(β∗)+(β−β∗)>F ′n(β∗)+
1

2
‖β−β∗‖2K+h(β), (2)

where h ≡ 0 and Fn(β) := n−1
∑n
i=1 `(Yi, X

>
i β).

• If K is approximately the second derivative of
Fn(β), then the objective of η is a quadratic ap-

proximation of the objective of β̂.

• For convex and non-zero regularizers h(·), we can
define the first order expansion as η minimizing (2).

Intuitive Expansion

• Consider (Xi, Yi) ∈ Rp × R i.i.d random vectors

Yi = X>i β
∗ + εi, εi independent of Xi,

the penalized estimator β̂ and its approximation η

β̂ := argminβ∈Rp n−1
∑n
i=1(Yi −X>i β)2 + 2h(β),

η := argminβ∈Rp ‖Σ(β−β∗)‖2− 2
nε

TX(β−β∗)+2h(β)

where X has rows X1, ..., Xn. Here η has simpli-
fied form thanks to to K := E[∇2Fn(β∗)] = Σ for
squared loss `(y, u) = (y − u)2/2.

• h(β) = λ‖β‖1 (Lasso) or h(β) = λ
∑G
k=1 ‖βGk

‖ for
M groups of size d = p/M (Group-Lasso).
Then for Σ = E[XX>], under Restricted Eigen-
value (RE) or bounded condition number for Σ:
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φcond(Σ) ≤ C ‖η − β̂‖ . r2n ‖η − β̂‖ . r2n

• Approximation ‖β̂ − η‖ negligible compared to rn.
• Similar results obtainable for Slope, Nuclear norm,...

Result for Regularized Linear Regression

For squared error loss with arbitrary proper convex
penalty h(·), if X1, . . . , Xn are i.i.d standard normal
random vectors in Rp, then we get

‖β̂ − β∗‖2(
E[‖proxh(β∗ + n−1/2σ∗Z)− β∗‖22]

)1/2 = 1+op(1),

whenever s log(ep/s)/n → ∞ and s/p → 0 (Lasso).
Here proxh(·) is the proximal operator and Z is a
standard Gaussian random vector.

Application: Exact Risk Identity

• Suppose (Xi, Yi) ∈ Rp × {0, 1} are i.i.d
P(Yi = 1|Xi) = 1

1+exp(−X>i β∗)
(logistic model).

• Loss `(y, u) = yu− log(1 + eu) and estimator

β̂ := argminβ∈Rp
1
n

∑n
i=1 `(Yi, X

>
i β) + h(β).

• Due to the non-constancy of second derivative of
β 7→ `(y, x>β), there is an extra term in ‖η − β̂‖
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Result for Regularized Logistic Regression

Linear regression y = Xβ∗ + ε, y = (Y1, ..., Yn)
• X is the design matrix with rows X1, ..., Xn,
• a ∈ Rp direciton of interest, with ‖Σ−1/2a‖2 = 1.
De-biased estimate

θ̂ = aT β̂ + n−1aTΣ−1XT (y − Xβ̂)

If X1, ..., Xn are iid N(0,Σ) independent of ε =
(ε1, ..., εn) ∼ N(0, In) then, provided r2nn

1/3 → 0,

√
n(θ̂ − aTβ∗)→d N(0, 1).
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Goes beyond the s .
√
n (Lasso) or sd+s log(M/s) .√

n (Group-L) requirement of previous studies.

Application: Confidence intervals for aTβ∗
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