e Classical estimators for regression are defined as

B = argmingeg, n= ' Y U(Y;, X."B),

for a loss function £(-, ).

e Under differentiability of £ (in second argument), it
can be proved for a matrix K that

B=p"+ 3 T KXl (Y XT84+ 0y (3)
A (1)
This is a first order expansion of j.

e In addition to proving B is “close” to B, it also
gives a precise characterization of error 5 — 5*.

e In the context of convex regularized estimators de-
fined as

3 := argmin n~! ZE(E,XZTB) + h(B),

peRe i=1

for any convex regularizer h(-), many existing re-
sults show that 3 is close to 5*.

What is a first order expansion for convex
regularized estimators?

\

Intuitive Expansion

e For unregularized estimators (with h = 0), the ex-
pansion n = B* +n= 1Y KMV, X' B*) of B
can be thought of as minimizing (over § € RP)

Fu(B*)+(8—B") " F,(5")+ *Ilﬁ B ll%+h(B), (2)

where h =0 and F,(8) :=n"1 > ((Y;, X, B).

e If K is approximately the second derivative of
F,(B), then the objective of n is a quadratic ap-
proximation of the objective of 5.

e For convex and non-zero regularizers h(-), we can
define the first order expansion as 7 minimizing (2).

First order expansion of convex regularized estimators
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What is a First Order Expansion?

Result for Regularized Linear Regression

e Counsider (X;,Y;) € R? x R i.i.d random vectors

Y; = X, B* +¢;, ¢; independent of X,

the penalized estimator B and its approximation n
-t Zz 1 (Y

7 1= argmingcgy, ||Z(B—B*)HQ—%eTX(B—B*)—&—Qh(B)

where X has rows X3, ..., X,,. Here n has simpli-
fied form thanks to to K := E[VyF,(8*)] = X for
squared loss £(y,u) = (y — u)?/2.

o h(B) = |81 (Lasso) or h(8) = AX_j_; | Bc, || for
M groups of size d = p/M (Group-Lasso).

Then for ¥ = E[XX "], under Restricted Eigen-
value (RE) or bounded condition number for 3:

B := argmingcg, n X, 8)% +2h(B),

‘ ‘ Lasso ‘ Group-Lasso
‘ Tuning A Z ‘ [% log %]% ‘ [d + % log %]%
1B=B8" 1 Srn | 1B=81 S

[+ £log M]3
| RE(s,2)>C | ln—B1 <ri? | In—8) < ri?
| Geona(2) <C | In=BISr2 | In—Bl Sr2

e Approximation || B— 7| negligible compared to r,.
e Similar results obtainable for Slope, Nuclear norm,...

- 1
Minimax ry, rn = [2log £]2

e ————TOTIOGe>5 R ——————

Application: Exact Risk Identity

For squared error loss with arbitrary proper convex
penalty h(-), if X;,...,X, are i.i.d standard normal
random vectors in R?, then we get

18 = B*1l2
(E[|prox,, (8* + n~1/20+2) — g*|2])"/*

= 1+o0,(1),

whenever slog(ep/s)/n — oo and s/p — 0 (Lasso).
Here prox,(-) is the proximal operator and Z is a
standard Gaussian random vector.
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Result for Regularized Logistic Regression
e Suppose (X;,Y;) € RP x {0,1} are i.i.d
P(Y; =11X;) = m (logistic model).
e Loss {(y,u) = yu —log(1 + e*) and estimator
B = argming g, %2?21 0V, X[ B) + h(B).
e Due to the non-constancy of second derivative of
B+ £(y,x " B), there is an extra term in ||n — j3||

‘ ‘ Lasso ‘ Group-Lasso
| Tuning A2 | [2log 23 | [d+ 2log 2]}
1B =B S | 1B =51 Srn
Minimax r, rn = [2log £ ] 44 2]og M]3

E
| RSC(s)>C | |In—-BIS r3/2<1 +r3y/n)
‘ ¢cond(K) <C ‘ HU - ﬂH ~ rn(]' + rn\//ﬁ)

T B*

Application: Confidence intervals for a” (

Linear regression y = X5* + ¢, y=(Y1,....Y,)
e X is the design matrix with rows Xi,..., X,,,

e a € R? direciton of interest, with |£~1/2ally = 1
De-biased estimate

0=a"B+n"ta"SXT(y — XPB)

If Xq,..,X, are iild N(0,X) independent of ¢ =
(1, y6n) ~ N(0,1,) then, provided r2n'/3 — 0,

Vvl —ad'g*) =2 N(0,1).

‘ ‘ Lasso ‘ Group-Lasso ‘
| Tuning A 2 | [ log £)? | [d+2log 2]t |
| Minimax 7y | 7 = [ﬁ log 2]2 | [4 + 2 log )7 |

Goes beyond the s § f (Lasso) or sd+s log(M/s) <
v/n (Group-L) requirement of previous studies.
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