Coupling from the Past

This note provides a guided tour through two proofs of the coupling from the past algorithm (J.
G. Propp and Wilson 1996; J. Propp and Wilson 1997) to perfectly sample from the stationary
distribution of an irreducible Markov chain. It also explains why two related ideas (a forward
scheme and sampling fresh random functions at each iteration) both fail at perfectly sampling
from .

Random mapping representation for P(-,-)

Let X be a finite set and let P(-,-) be an irreducible and aperiodic transition matrix on X,
with stationary distribution 7. Throughout, a random function f: X' — X is given such that
for any z,y € X we have

P(f(z) =y) = P(z,y).

Let (f;)¢=0,1,2.... be a countable sequence of iid copies of f that the practitioner may use for
sampling. For any ¢ > 0 we thus have P(f,(z) = y) = P(z,y) for all deterministic =,y € X.

The goal is the perfectly sample from the unique stationary distribution = of P(-,-). It is
perhaps natural to define random variables on I using that the events

{f;o fr_qo..0f is constant } or {f; o fyo...o f_is constant },

where 7 is a possibly random integer, as in both cases we can use the unique value of the
corresponding constant function to canonically define a random variable in X



Coalescence and zero-one law

The first question is whether such random integer 7 actually exists. If P(f, o f,_1c...f;) =0
for all deterministic £ > 1 then no such random 7 exists by sigma-additivity. On the other
hand, if ¢, = P(f, o f;_1 o ... f;) > 0 for some ¢ > 1, then
P(fkt o fr—1 © - f1 is not constant) < P( NE_y {fit © fit—1© - fi—1)141 18 not constant})
=(1- Qt)k
which converges to 0 as £ — 400, so that by the monotonge convergence theoren,
T=min{t > 1: f_o...o f; is constant }

is finite with probability one. In summary P(7 = +o0) € {0, 1}, which is an example of a
zero-one law.

Finite coalesence

There are random functions f such that P(7 = +00) = 1, even for irreducible and aperiodic
chains, for instance by coupling the values of f to synchronously move on the cycle X' =
{0,...,n—1} as in

P(f(zr)=z+A modn)=1/3, for all A € {—1,0,1}.

This gives a first negative answer: We cannot always assume that P(7 < 400) = 1.

However, for a given aperiodic and irreducible transition matrix P(-,-) we can always construct
a random mapping representation f such that P(7 < 4+o00) = 1 by choosing f such that
(f(z)) e are mutually independent. Since there exists an integer k > 1 such that P*(x,y) > 0
for all z,y € XX, taking any fixed y, we find that

P(r<k) 2P(Neaivo = fro o fil@)}) = H P*(x,y,) > 0.
zeX

By the previous zero-one law, in this case P(7 < +00) = 1.

From now on, we assume that the random mapping representation is such that P(7 < +o0) =
1.



Forward

The first idea is to apply the random functions f;, fs, ... forward, as one would naturally proceed
to smaple a Markov chain. Start from an initialization z, € X, apply f; to obtain f,(x,) as
the first state of the Markov chain, apply f, to obtain f, o f;(z,) as the second state, apply f5
to obtain f5 o fy o fi(zy), etc. Consider the random variable

f‘rof‘rfl ... Ofl(xO)a

that is, the value of the first constant function of the form f, o f, ; o...o f;. With the following
example,
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any random mapping representation is such that P(f, o...o f;(z,) = C) = 1 so this random
variable cannot be distributed according to the stationary distribution 7 > 0 which has positive
mass on each of {A, B,C}.



Backward - Coupling from the Past

The key idea in coupling from the past (J. G. Propp and Wilson 1996) is to consider a
“backward” scheme instead, where the random functions are appplied backward instead of the
previous forward scheme. Define the random integer F' > 1 as

F=min{t > 1: f; o fyo..o0 f, is constant }

and denote by X the value of the corresponding constant function, that is,

X =frofyo..ofplzy)
for a choice of some deterministic z, € X that does not matter.
Now consider a sequence (g,);>; of iid functions with the same distribution as f and the (f;);.
Define, in exactly the same way,
G=min{t >1:g, 0gy,o0..0g, is constant }, Y =g, 0gyo...0ga(xy).
By construction (G,Y) is equal in distribution to (F, X) as the first uses (9¢)¢>1, the second
uses (f;);>1, and both sequences are assumed iid with the same distribution as f.

Now define the (g;);~; by g; = f;_1, so that (g,);>; is indeed a sequence of iid functions with
the same distribution as f. Then

fo(j() = foo fio..ofp(zg)
=0g1°092° - °Gpi1(Zg)-

constant

Since f;o...... ofp=gyo...0g9p, is constant by definition of I, necessarily g, cgyo...ogp 4 is
constant too because composing a constant function with another produces a constant function.
This implies G < F'+ 1 and fo(X X) = Y with probability one. Now [fq 1s independent of X since
(F, X) is defined as a function of ( ft)t>1 only, excludlng fo- That X is independent of f, and

the equality in distribution f,(X ) =d X proves that X is distributed according to w. This
argument has likely appeared before, though I am yet to find a reference.

Backward (another proof of perfect sampling)
Another simple proof observes that for any € > 0, there exists ¢ > 1 such that
P(fyo...of, is constant ) > 1 —¢

by the assumption P(7 < +o00) = 1. If X_ is distributed according to 7 independently of
(fi)e=1, then fy o fyo ... 0 f,(X,) also has distribution 7 since 7 is stationary. If v is the



distribution of X, by definition of X we have P(X = X_) > 1 —e. Since the total variation
distance is the infimum of P(X # Y') over all couplings (X,Y) of v and m,

lv =7y <P(X # X,) <e

This holds for all € > 0 hence X ~ m. This argument can be found in (Haggstrom 2002,
Theorem 10.1).

Part 11l (sampling ¢ new, fresh random functions)

Consider now the following algorithm:

Algorithm 2:

a. Set t =1.
b. Generate f1<t), féw, f:gt), e ftm iid copies of the random function f independently of all
previous iterations of the algorithm

c. o If f{w °o...0 f;t) is a constant function, then output its unique value Z and stop the
algorithm.
e Otherwise, throw away f1<t), féw, fét), e fft), increase t by one, i.e., set t :=t+ 1 and
go to step b.

It was known early on with the works J. G. Propp and Wilson (1996); J. Propp and Wilson
(1997) that this, perhaps natural, idea fails to perfectly sample from 7 because of the following
example. This means that reusing the same randomness in coupling from the past is key to
perfectly sample from 7.

To see that Algorithm 2 fails, let X' = {A, B, C'} with the random function f defined by

P(f(A)= B, [(B) = C, f(C) = C) =1/2, P(f(4)=A,f(B) = A, f(C) = B) =1/2,
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This Algorithm 2 fails to sample from 7 because, if T' denotes the random time at which the
algorithm terminates,

P(T:Q,Ze {A,C}) +P(T=3,Ze {A,C}) > 1(A) + 7(C).

That is, only looking at the events that the algorithm terminates within three iterationms, the
algorithm has already oversampled from {A, C'}.
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